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Unicolored phosphor-sensitized fluorescence
for efficient and stable blue OLEDs
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Improving lifetimes and efficiencies of blue organic light-emitting diodes is clearly a scientific

challenge. Towards solving this challenge, we propose a unicolored phosphor-sensitized

fluorescence approach, with phosphorescent and fluorescent emitters tailored to preserve

the initial color of phosphorescence. Using this approach, we design an efficient sky-blue

light-emitting diode with radiative decay times in the submicrosecond regime. By changing

the concentration of fluorescent emitter, we show that the lifetime is proportional to the

reduction of the radiative decay time and tune the operational stability to lifetimes of up to

320 h (80% decay, initial luminance of 1000 cd/m2). Unicolored phosphor-sensitized

fluorescence provides a clear path towards efficient and stable blue light-emitting diodes,

helping to overcome the limitations of thermally activated delayed fluorescence.

DOI: 10.1038/s41467-018-07432-2 OPEN

1 InnovationLab, 69115 Heidelberg, Germany. 2 Institute for High Frequency Technology, TU Braunschweig, 38106 Braunschweig, Germany. 3 BASF SE,
67056 Ludwigshafen, Germany. 4Max Planck Institute for Polymer Research, 55128 Mainz, Germany. 5Present address: Merck KGaA, 64293 Darmstadt,
Germany. 6Present address: trinamiX GmbH, 67063 Ludwigshafen, Germany. Correspondence and requests for materials should be addressed to
D.A. (email: denis.andrienko@mpip-mainz.mpg.de) or to R.L. (email: r.lovrincic@tu-braunschweig.de)

NATURE COMMUNICATIONS |          (2018) 9:4990 | DOI: 10.1038/s41467-018-07432-2 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0003-3029-8840
http://orcid.org/0000-0003-3029-8840
http://orcid.org/0000-0003-3029-8840
http://orcid.org/0000-0003-3029-8840
http://orcid.org/0000-0003-3029-8840
http://orcid.org/0000-0002-1541-1377
http://orcid.org/0000-0002-1541-1377
http://orcid.org/0000-0002-1541-1377
http://orcid.org/0000-0002-1541-1377
http://orcid.org/0000-0002-1541-1377
http://orcid.org/0000-0001-5429-5586
http://orcid.org/0000-0001-5429-5586
http://orcid.org/0000-0001-5429-5586
http://orcid.org/0000-0001-5429-5586
http://orcid.org/0000-0001-5429-5586
mailto:denis.andrienko@mpip-mainz.mpg.de
mailto:r.lovrincic@tu-braunschweig.de
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Currently, external quantum efficiencies of deep blue
organic light-emitting diodes (OLEDs) in commercially
available display and lighting applications are limited by

unfavorable spin statistics of fluorescent emitters, because
operational lifetimes of (long desired) blue phosphorescent and
thermally activated delayed fluorescence (TADF) OLEDs are too
short to warrant industrial interest. OLED researchers have been
exploring several routes trying to improve the stability and the
efficiency of blue OLEDs1–3. Conceptually, harvesting excited
triplet states boosts efficiency, whereas reducing the decay time of
excited states decreases the probability of degradation reactions,
triggered by triplet-triplet annihilation4–6 and triplet-polaron
quenching7–9. In practice, one has to find a compromise: phos-
phorescent emitters, for example, do harvest triplet states but
have long excited state decay times. A different approach is to
design fluorescent emitters capable of harvesting triplet excitons.
Small singlet-triplet splitting of these emitters facilitates efficient
(reverse) intersystem crossing, (R)ISC, from the triplet to the
singlet state10–12, leading to TADF2,10–14. Excited state decay
times of TADF and phosphorescent emitters are, however, of the
same order of magnitude, resulting in similarly fast operational
degradation.

Stability and color purity of TADF OLEDs can be improved by
combining TADF emitters with conventional fluorescent emitters
in a sensitizing approach15,16. In such a hyperfluorescent TADF
OLED, an efficient Förster resonance energy transfer (FRET)
from the singlet excited TADF state to a singlet of the fluorescent
emitter reduces the number of RISC/ISC cycles prior to radiative
decay. The radiative decay time is, however, still limited by the
rate of the RISC process: due to spin statistics, 75% of excited
states need to be transferred to singlet states prior to FRET or
fluorescence. Due to the quadratic dependence of the RISC rate
on the spin-orbit coupling strength17, the decay rate of the
delayed emission is limited to � 106 s−1,18,19. The slow decay rate
of the delayed emission, ultimately, limits the stability of hyper-
fluorescent TADF OLEDs.

An alternative to TADF approach, which also surpasses the
5–7 % theoretical limit for the external quantum efficiency of
fluorescent OLEDs, is the phosphor-sensitized fluorescence
approach, shown in Fig. 1(a)20–24. Generally speaking, FRET
from a triplet to a singlet state is spin-forbidden and hence
inefficient. Long decay time of the excited phosphorescent triplet
state and a high photoluminescence quantum yield can, however,
compensate for the slow FRET rate25. In principle, all excited
states can be directly transferred to the fluorescent acceptor via
FRET. Direct transfer results in shorter radiative decay times than
TADF hyperfluorescence. This was demonstrated in a recent

work by Kim et al.,26 showing a significant decay time reduction
in the transient PL-characteristics of the well-known phosphor-
escent green-emitter Ir(ppy)3 by adding a yellow emitting fluor-
escent acceptor. Sensitization is particularly interesting for white
OLEDs, where a blue sensitizer is used to pump a yellow (two-
component white OLED) or a green and red (three-component
white OLED) emitter. A sensitized white OLED offers a stable
white color with respect to changes in the driving voltage or
degradation of blue sensitizer, since its emission depends exclu-
sively on the exciton formation on the sensitizer27–29.

In principle, an efficient fluorescent blue OLED could be rea-
lized using a sensitizing donor emitting in the UV spectral range.
High exciton energies would, however, lead to a very fast
degradation of the device. This is why the classic sensitization by
a red-shifted (with respect to the donor) acceptor emission is not
suitable for the realization of a stable blue OLED. Conceptually, a
fluorescent acceptor with an emission spectrum matching the
emission of the phosphorescent sensitizer, as schematically
depicted in Fig. 1(b), can also be used. Thereby, the excitation
energy required to pump the acceptor emission is effectively
reduced. In fact, using acceptors with a narrow emission peak can
even improve color purity. Until now, however, a number of
practical design challenges prevented the realization of a uni-
colored sensitized emitting system. Due to large reorganization
energies of organic emitters upon excitation (Stokes shift), the
overlap of donor’s emission and the acceptor’s absorption is
reduced in a unicolored phosphor-sensitized fluorescence (UPSF)
system compared to a non-unicolored system. Indeed, assuming
Gaussian shape of the peaks, we can estimate the spectral overlap

J to be proportional to exp � Eabs
A �Eem

Dð Þ2
2 σ2Aþσ2Dð Þ

� �
, where Eabs

A and Eem
D are

the positions of the absorption and emission peaks of the donor
and acceptor, as indicated in Fig. 1(b). In a unicolored system,

Eem
D � Eem

A , hence J � exp � E2
A;stokes

2 σ2Aþσ2Dð Þ
� �

, i.e., is limited by the

Stokes shift of the acceptor. Small FRET rates require higher
concentrations of the acceptor. High acceptor concentrations
facilitate Dexter transfer of excited triplets of the donor to the
acceptor and, consequently, efficiency losses due to non-radiative
quenching of excited states. The chemical design of UPSF OLEDs
should therefore target donor-acceptor combinations with small
Dexter and large FRET rates, at the same time optimizing the
acceptor concentration to achieve a balance between OLED effi-
ciency and lifetime.

In this work, we present the first realization of UPSF, an
emitting system where the emission color of the sensitizer is
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Fig. 1 Working principle of unicolored phosphor-sensitized fluorescence. a Radiative decay paths of phosphor-sensitized fluorescence. Long-range Förster
resonance energy transfer from the triplet state of the phosphorescent donor to the energy-matched singlet state of a fluorescent acceptor reduces excited
state decay time while preserving the emission color. Unwanted Dexter transfer to the acceptor triplet state can lead to a reduced quantum efficiency.
b Spectral properties: absorption (dashed lines) and emission (solid lines) of donor (blue) and acceptor (red) in a unicolored phosphor-sensitized
fluorescence system. The shaded area indicates the spectral overlap J of donor emission and acceptor absorption
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preserved and the device stability increased. Using UV–visible as
well as steady-state and time-resolved photoluminescence spec-
troscopies and molecular dynamics simulations, we elucidate
photophysical properties of the UPSF system. In addition, we
fabricate a series of bright, sky-blue UPSF OLEDs that show a
linear relation between the radiative decay time reduction (by a
factor of three) and OLED lifetime increase, without any emission
color shifts. Our optimized devices are among the best published
sky-blue OLEDs regarding a balance between efficiency and sta-
bility, while UPSF presents a clear path forward for long-term
stable, highly efficient blue OLEDs.

Results
Förster energy transfer between donor and acceptor. The che-
mical structures of phosphorescent donor (D)30, fluorescent
acceptor (A)31, and matrix (M)32 materials are shown in Fig. 2,
together with the UV–vis absorption spectra of M-, D- and A-
layers, and normalized PL spectra of both emitters in the matrix.
The donor and acceptor emission spectra have, by design, similar
spectral shapes and peak positions at 480 nm. Despite the nar-
rower peak of the acceptor’s emission, there is still some overlap
between donor emission and acceptor absorption, which can
facilitate Förster transfer of the excited donor states to singlets of
acceptor.

To determine the Förster radius of the emitting system, we
measured extinction spectra of acceptor dissolved in toluene at
concentration of 10−6 M. The Förster radius of the donor,
RFRET ¼ 2:4 nm, was estimated from the spectral overlap integral
J(λ) of the extinction spectrum of the acceptor and the
normalized photoluminescence spectrum of the donor, which
are shown in Supplementary Figure 1. The UPSF system has a
smaller FRET radius compared to a non-unicolored system,
which are typically in the range of 4–5.5 nm20,33–35. This
reduction is due to a smaller spectral overlap of donor’s emission
and the acceptor’s absorption.

Radiative decay times. To investigate FRET between donor and
acceptor and its impact on the radiative decay times, we per-
formed time-resolved PL (TRPL) measurements of mixtures and
bilayers. To ensure the predominant excitation of the donor
molecules, we used a 375 nm laser for excitation. This excitation
wavelength is close to the minima of absorption of both matrix
and acceptor (see Supplementary Figure 2) but is well within the
maximum of the donor absorption. Using the corresponding
absorption coefficients, we calculated that donor molecules
absorb over a factor of 10 more light than acceptor molecules in
all PL measurements, namely 95, 47, 32, and 10 times more for

0.5%, 1.0%, 1.5%, and 5% acceptor concentrations, respectively.
The bilayer samples, sketched in Fig. 3, were composed of a donor
and an acceptor layer separated by a thin spacer layer of matrix
material. We used the following weight ratios: M:D(80:20,
10 nm)/Mspacer(0–6 nm)/M:A(95:5, 10 nm). The mixed samples
were co-evaporated on glass substrates with a constant donor
concentration of 20 vol %. We gradually increased the acceptor
concentration from 0% (reference) to 1.5 vol %, at the same time
decreasing the matrix concentration from 80% to 78.5%. Since the
bilayer geometry excludes the Dexter transfer, we can use rather
high acceptor concentration of 5% and improve the sensitivity of
detection of FRET events. The emission was measured close to
the peak maximum at 480 nm. Figure 3 shows the time-resolved
spectra of the bilayer and mixed samples.

In the case of the bilayer, Fig. 3(a), a clear shift of slower events
(>1 µs) to faster ones (<0.5 µs) is visible when the spacer thickness
reaches values below 3 nm. This is due to an increase in FRET at
donor-acceptor separations below the Förster radius of 2.4 nm.
Because of the rapid FRET, less triplet excitons decay radiatively
on the donor (slow phosphorescence), but undergo FRET and
decay on the acceptor molecules (fast fluorescence). Hence, a net
transition from slow to fast decays is observed.

For the mixed layers, Fig. 3(b), we performed multi-
exponential fits to identify the average (intensity-weighted)
fluorescence decay times, as described in the Supplementary
Note 2: Fluorescence and radiative decay times. In order to
extract the radiative decay time, we weighted these values by the
corresponding quantum yields. The determined decay times of
1.60 μs, 1.06 µs, 0.77 µs, and 0.49 µs for 0%, 0.5%, 1%, and 1.5%
acceptor concentrations, show that UPSF, indeed, leads to a
reduction of the radiative decay time. The estimated values for the
FRET-rates and transfer efficiencies are given in the Supplemen-
tary Note 3: Estimation of the Förster rate.

Dexter energy transfer. In addition to FRET to the singlet excited
state of the acceptor molecules, Dexter transfer to the triplet states
can occur in UPSF, which is detrimental to the efficiency of a
UPSF system. To quantify the effect of Dexter transfer on the PL
quantum yields (PLQY), we measured steady-state photo-
luminescence of 50 nm thick mixed M:D:A layers, which are
shown in Supplementary Figure 3. Table 1 summarizes the PLQY
values for all acceptor concentrations.

The sample with only donor shows the highest quantum yield of
∼100%. Similarly, an emitter layer with acceptor only shows a high
PLQY of 95%. For the mixed layers, the PLQY gradually decreases
with the increase of the acceptor concentration (see Table 1), due to
increasing Dexter transfer from the excited triplets of the donor to
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Fig. 2 Molecular structures and photophysical properties of the unicolored phosphor-sensitized fluorescence system. a Molecular structures of the matrix,
acceptor, and donor molecules. b UV–visible spectra of neat matrix, donor and acceptor layers on glass and normalized photoluminescence spectra of
donor and acceptor in matrix. The red line shows the excitation wavelength of 375 nm used for the photoluminescent experiments
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the triplets of the fluorescent acceptor, where they are subsequently
trapped and quenched21,22,28,36–39. At a donor to acceptor ratio of
20:1.5, already 25% of excitons undergo Dexter transfer from donor
to acceptor. This highlights that the material system can be further
optimized by reducing the Dexter transfer.

To get a better insight into the processes in mixed layers, we
performed molecular dynamics simulations of their amorphous
morphologies, as described in the Supplementary Note 6:
Simulations. Using these morphologies (see Supplementary
Figure 4), we calculated the effective FRET rate from a particular
donor, to all the surrounding acceptor molecules. The distribu-
tions of these rates for all donors is rather broad, implying that we
should not expect a monoexponential behavior of the FRET. This
is indeed obvious from Fig. 3, where the intermediate timescale
(up to a µs) is better described with a stretched exponential. The
averaged, over all donors, FRET rate is shown in Supplementary
Figure 5. Simulations predict that it saturates at ∼3 vol %, at
which point it is three times larger than kPh. To study how the
Dexter rate depends on the acceptor concentration, we have
determined the number of neighboring acceptor molecules for
every donor (see Supplementary Figure 6). It turns out that most
donors have only one acceptor as a neighbor, hence the
percentage of donor molecules participating in the Dexter
transfer is proportional to the acceptor concentration.

The dependence of the FRET and Dexter rates on the acceptor
concentration, tells us that, tuning the OLED operational lifetime
and efficiency by changing the acceptor concentration is possible
only within a certain range of acceptor concentrations (in our
case up to 3%). Increasing the concentration further does not lead
to a decrease of excitation decay times (and hence the operational
stability of an OLED) but still increases quenching of triplet states
via the Dexter transfer, thus reducing the overall OLED efficiency.
To further improve OLED stability and efficiency, one has to
chemically design donors and acceptors which favor long-range
energy transfer and disfavor short-range migration of triplet
states. In fact, a recent study showed that by attaching 2-
phenylpropan-2-yl spacer ligands to an acceptor molecule, and by
thoroughly engineering of an OLED device, quenching due to
Dexter transfer can be suppressed in a TADF-sensitized OLED,
allowing for acceptor concentrations as high as 3–5 weight %40.
This shows that a UPSF-system with a maximum FRET rate at 3
volume % and without the drawbacks of reduced quantum
efficiency from Dexter transfer is indeed feasible. Our estimate
predicts that, by suppressing the Dexter transfer, the FRET rate
can be increased by at least a factor of two (see Supplementary
Figure 7), which would result in a total increase of the radiative
decay rate by a factor of seven, since
krad ¼ kph þ kFRET ¼ kph þ 6kph ¼ 7kph.

Table 1 Photolumiescence quantum yields and decay times, external quantum efficiencies, color coordinates, and lifetimes for
different donor/acceptor concentrations in the matrix

D:A [%] 20:0 20:0.5 20:1.0 20:1.5 0:5/2

PLQY 100% 82% 66% 63% 95%
τrad (µs) 1.60 1.06 0.77 0.49 0.004
EQE(1000 nits) 13.9% 11.6% 11.0% 10.5% 1.4%
EQE-relative 100% 83.5% 79% 75.5% −
(CIEx,CIEy) (0.156, 0.278) (0.147, 0.275) (0.142, 0.272) (0.139, 0.274) (0.133, 0.258)
LT70 (25mA/cm2) 26 h 47 h 60 h 76 h 16.8 h
LT70 (4000 cd/m2) 46 h 63 h 71 h 79 h −

The last column refers to systems without donor, with 5% acceptor for photoluminescent measurements and 2% for light-emitting diodes
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OLED characteristics. We fabricated a series of UPSF-OLEDs
with acceptor-doped emission layers, to demonstrate the feasi-
bility of our UPSF approach. The full stack information, includ-
ing the chemical structure of all compounds used in the OLED,
are shown in Supplementary Figure 8. The current–voltage (J–V)
characteristics of the UPSF OLEDs do not change with acceptor
concentration, implying that the acceptor molecules do not par-
ticipate in charge transport. The electrons are transported only by
the donor-molecules, which ensures exciton formation exclusively
on donors (see Supplementary Note 7: OLED stack and materials
for a discussion of charge transport in the UPSF OLEDs). Sub-
sequently, excitons either decay radiatively on donor molecules by
phosphorescence, or transfer to the acceptor molecules via FRET,
and decay fluorescently.

EQE versus luminance, Fig. 4(b), shows a decrease in EQE with
increasing A concentration. At a luminance of 1000 cd/m2 we
extracted values of 13.9, 11.6, 11.0, and 10.5%. Note that the
moderate EQE value of the D-only device is due to isotropic
orientation of the emitter in the film and can be further increased

by optimizing the emitter orientation, which reduces light out-
coupling losses41,42.

In Table 1 the relative EQE values are compared to the
previously determined PLQY values. Considering a potential
deviation of +/−0.1% in the respective doping concentrations, as
well as an error of +/−5% for the PLQY values, the EQEs are in a
good agreement with the PLQY values. We conclude that, the
decrease in EQE has the same origin as the decrease in PLQY,
namely exciton trapping on the acceptor triplets due to Dexter
transfer from the donor triplet states.

In Fig. 4c, d we compare the normalized EL and PL spectra of
the mixed layers and corresponding OLEDs. The spectra of
matrix:acceptor (acceptor-only) samples are included for refer-
ence. In both cases, a narrowing of the emission peak width can
be observed with increasing acceptor concentration, gradually
approaching the spectral shape of the acceptor-only sample. This
proves that a part of the luminescence stems from acceptor
molecules. Since we ensured the predominant excitation of donor
by carefully choosing the excitation wavelength and by energy-
level management of the OLEDs (EL-spectra), we conclude that
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the observed fluorescence of acceptors is due to FRET from the
excited donor molecules.

A comparison of the corresponding CIE-coordinates in Table 1
(see also Supplementary Figure 9) shows that the emission color
of the phosphorescent sensitizer is indeed preserved. Notably, this
color can even be tuned towards a deeper blue by using an
acceptor with a specific spectral shape, as shown in Supplemen-
tary Figure 10. To estimate the ratio of phosphorescent to
fluorescent emission, we fitted the normalized spectra of the
donor-only (M:D) and acceptor-only (M:A) samples with three
Gaussians, and used their linear combination to reproduce the
spectra of the M:D:A mixtures, which is shown in Fig. 4c, d. The
respective coefficients for phosphorescence (D) and fluorescence
(A) are given in the insets. Both PL and EL, show a clear shift of
phosphorescence to fluorescence with increasing acceptor con-
centration, reflecting the increase in the FRET rate (see
Supplementary Figure 11 for a comparison to the estimated
transfer efficiencies of the FRET).

UPSF OLED LT70 lifetimes, that is the period over which the
luminance decreases to 70% of its initial value, were measured at a
constant current. To compare two different stress conditions, we
measured LT70 at the same initial current density of 25mA/cm2

LT25
70

� �
and at the same initial luminance of 4000 cd/cm2 LT4000

70

� �
.

The corresponding decay profiles are shown in Supplementary
Figure 12. Figure 5 shows LT4000

70 , LT25
70 as well as the inverse of the

radiative decay time as a function of the acceptor concentration.
For LT25

70, in addition to a remarkable (factor of three) increase in
the OLED lifetime for 1.5% acceptor concentration, we also
observe an excellent correlation between the relative increase of
the decay rate and the increase of the device lifetime. The LT70

values are summarized in Table 1. For LT4000
70 , the decrease in

current-efficiency has an additional (detrimental) impact on the
OLED lifetime explaining its smaller increase with the acceptor
concentration. Indeed, quenching of excited donor states by
Dexter transfer to the acceptor, requires a higher current to
achieve an initial luminance of 4000 cd/cm2. In addition, trapped
on the acceptor, triplet excitons contribute to the overall
population of long-living excited states, leading to a faster
degradation of the device.

To compare the lifetime of the OLED with 1.5% acceptor,
measured at the initial luminance of 4000 cd/m2, with the most
stable published blue phosphorescent OLEDs43,44, we also
estimated LT80 at 1000 cd/m2 (see the Supplementary Note 12:

Lifetime estimation). This estimate yields LT80 ~ 320 h, which is
close to the highest published value of LT80= 334 h for a blue
phosphorescent OLED44. Our UPSF OLED has, however, a
higher EQE (10.4% vs 9.6%) and deeper blue emission (CIEy=
0.27 vs CIEy = 0.30). Furthermore, the device stability of our
UPSF system already compares favorably to recently published
sky-blue TADF OLEDs45 with LT80 of 94 h measured at 500 cd/
m2. A conservative estimate of the lifetime of a UPSF-system with
suppressed Dexter transfer predicts a lifetime boost by a factor of
seven, exceeding LT80 ~ 1200 h at 1000 cd/m2

.

Discussion
We have proposed a triplet-singlet dual emitting system based on
unicolored phosphor-sensitized fluorescence (UPSF). Steady-state
and TRPL spectroscopies of model emission layers demonstrated
that UPSF reduces the radiative decay time of the donor. The
reduction is due to the fast resonant energy transfer of excited
triplets to singlets of the fluorescent acceptor. Fabricated blue
UPSF OLEDs preserved the original emission color of the donor.
The increase in their lifetime, directly proportional to the inverse
of the radiative decay time, opens up an optimization route for
efficient and stable blue OLEDs. We foresee that the full potential
of UPSF can be unlocked via (known) chemical design strategies.
In particular, fast resonant energy transfer can be boosted by co-
orienting the emitters. Likewise, Dexter transfer can be reduced
by shielding their localized excited state wavefunctions by
appropriate spacer groups. Finally, acceptor molecules with
smaller Stokes shift will enable the fabrication of stable deep blue
OLEDS, which meet the requirements for display applications.
Our results show a clear path toward highly stable and efficient
blue OLEDs.

Methods
Sample fabrication. All samples were prepared by thermal vacuum deposition in
the UHV (≤ 10−7 mbar). Doped samples were fabricated by co-evaporation of the
materials, while controlling each deposition rate independently with a respective
microbalance. The photoexcited samples were prepared on glass substrates (Bor-
ofloat 33, Schott) that were precleaned by acetone and isopropanol treatment in an
ultrasonic bath. The single OLED layers were deposited sequentially, without
breaking the vacuum, onto glass substrates patterned with a 120 nm thick indium
tin oxide (ITO) layer. Prior to the deposition, the substrates were cleaned by rinsing
with isopropanol and subsequent ozone treatment for 20 min. The final devices
were encapsulated with a glass cover in nitrogen atmosphere using an UV-epoxy
resin.

Photophysical measurements. UV–vis measurements were performed in trans-
mission mode using an AvaLight-DHS-Bal (Balanced Deuterium-Halogen light
source (200−2000 nm)). Extinction spectra of B dissolved in toluene were recorded
on a jasco UV/Vis V-670 spectrophotometer. Photoluminescence spectra including
the derived quantum yields were measured under current nitrogen flow using a PTI
QuantaMaster 40 spectrofluorometer equipped with an integrated sphere (Lab-
sphere) and a Hamamatsu R928P photomultiplier. The samples were excited at
wavelengths of 355, 375, and 410 nm with a Xenon lamp using a monochromator.
The TRPL spectra were recorded under current nitrogen flow using a time-
correlated single photon counting (TCSPC) system (Horiba Fluorocube). TRPL
samples were excited at 375 nm with a pulsed laser diode (Horiba NanoLED Model
N-375L).

Device characterization. J-V-L characteristics were measured using a sourcemeter
(Keithley 2400) and a luminance meter (Minolta LS-100). OLED lifetimes were
recorded at room temperature.

Molecular dynamics simulations. All Lennard-Jones parameters are taken from
the OPLS force field46–49, including the combination rules and a fudge-factor for
1–4 interactions of 0.5. Missing improper and torsional potentials are reparame-
trized based on QM scans50. Atomic partial charges of the acceptor, host, and
donor molecules are computed by using density functional theory (wb97xd func-
tional and 6–311+g(d,p) basis set), except for the Ir atom in the donor molecule for
which pseudopotential equivalent to the def2-tzvp basis set is used. Ground state
optimization of isolated molecules are performed and minimized configurations
are further used to compute the electrostatic potential at the same level of theory
and subsequently, atomic partial charges via the CHELPG51 scheme. Molecular
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Fig. 5 Correlation between lifetimes and radiative decay rates. Comparison
of the relative radiative decay rates (black) and relative lifetime values
(70% decay, LT70) as a function of acceptor concentration. The device
lifetimes were measured at constant current with initial current density of
25 mA/cm2 (blue) and initial luminance of 4000 cd/m2 (red)
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dynamics simulations were performed using the GROMACS package. Mixtures
were first equilibrated above their glass transition temperature and then quenched
to room temperature.

Data availability
Force fields and simulation data are available on request from the authors.
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